Commit a9cae3d7 authored by William Stonewall Monroe's avatar William Stonewall Monroe
Browse files

Added some comments

parent 5fdb6c78
%% Cell type:markdown id: tags:
# First lets get our data!
%% Cell type:code id: tags:
``` python
from keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
```
%%%% Output: stream
Using TensorFlow backend.
%% Cell type:markdown id: tags:
# Let's look at some of our data
%% Cell type:code id: tags:
``` python
# use Matplotlib (don't ask)
import matplotlib.pyplot as plt ##wsm
n = 10
plt.figure(figsize=(20, 2))
for i in range(1,n): ##wsm changed from for i in range(n):
ax = plt.subplot(1, n, i)
plt.imshow(x_test_noisy[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
# Let's create our machine learning architecture
Here we're creating an Autoencoder architecture
%% Cell type:code id: tags:
``` python
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (7, 7, 32)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
```
%% Cell type:markdown id: tags:
# Let's Train our Model...
%% Cell type:code id: tags:
``` python
from keras.callbacks import TensorBoard
autoencoder.fit(x_train_noisy, x_train,
epochs=100,
batch_size=128,
shuffle=True,
validation_data=(x_test_noisy, x_test),
callbacks=[TensorBoard(log_dir='/data/scratch/wsmonroe', histogram_freq=0, write_graph=False)])
```
%%%% Output: stream
Train on 60000 samples, validate on 10000 samples
Epoch 1/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0966 - val_loss: 0.0957
Epoch 2/100
60000/60000 [==============================] - 3s 44us/step - loss: 0.0966 - val_loss: 0.0957
Epoch 3/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0965 - val_loss: 0.0959
Epoch 4/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0963 - val_loss: 0.0959
Epoch 5/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0962 - val_loss: 0.0955
Epoch 6/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0962 - val_loss: 0.0953
Epoch 7/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0962 - val_loss: 0.0953
Epoch 8/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0960 - val_loss: 0.0952
Epoch 9/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0959 - val_loss: 0.0958
Epoch 10/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0959 - val_loss: 0.0957
Epoch 11/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0958 - val_loss: 0.0961
Epoch 12/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0958 - val_loss: 0.0954
Epoch 13/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0957 - val_loss: 0.0952
Epoch 14/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0956 - val_loss: 0.0951
Epoch 15/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0956 - val_loss: 0.0948
Epoch 16/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0956 - val_loss: 0.0949
Epoch 17/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0954 - val_loss: 0.0949
Epoch 18/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0954 - val_loss: 0.0947
Epoch 19/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0953 - val_loss: 0.0947
Epoch 20/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0953 - val_loss: 0.0949
Epoch 21/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0953 - val_loss: 0.0959
Epoch 22/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0952 - val_loss: 0.0952
Epoch 23/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0952 - val_loss: 0.0958
Epoch 24/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0951 - val_loss: 0.0946
Epoch 25/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0952 - val_loss: 0.0947
Epoch 26/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0951 - val_loss: 0.0944
Epoch 27/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0950 - val_loss: 0.0945
Epoch 28/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0950 - val_loss: 0.0947
Epoch 29/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0949 - val_loss: 0.0947
Epoch 30/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0949 - val_loss: 0.0949
Epoch 31/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0948 - val_loss: 0.0954
Epoch 32/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0948 - val_loss: 0.0942
Epoch 33/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0948 - val_loss: 0.0954
Epoch 34/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0948 - val_loss: 0.0942
Epoch 35/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0948 - val_loss: 0.0950
Epoch 36/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0947 - val_loss: 0.0942
Epoch 37/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0947 - val_loss: 0.0945
Epoch 38/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0946 - val_loss: 0.0950
Epoch 39/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0946 - val_loss: 0.0944
Epoch 40/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0946 - val_loss: 0.0943
Epoch 41/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0945 - val_loss: 0.0947
Epoch 42/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0945 - val_loss: 0.0947
Epoch 43/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0945 - val_loss: 0.0952
Epoch 44/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0944 - val_loss: 0.0949
Epoch 45/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0944 - val_loss: 0.0940
Epoch 46/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0944 - val_loss: 0.0940
Epoch 47/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0944 - val_loss: 0.0946
Epoch 48/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0944 - val_loss: 0.0945
Epoch 49/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0943 - val_loss: 0.0945
Epoch 50/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0943 - val_loss: 0.0940
Epoch 51/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0943 - val_loss: 0.0950
Epoch 52/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0943 - val_loss: 0.0939
Epoch 53/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0942 - val_loss: 0.0950
Epoch 54/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0942 - val_loss: 0.0939
Epoch 55/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0942 - val_loss: 0.0940
Epoch 56/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0942 - val_loss: 0.0939
Epoch 57/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0942 - val_loss: 0.0941
Epoch 58/100
60000/60000 [==============================] - 3s 49us/step - loss: 0.0941 - val_loss: 0.0943
Epoch 59/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0941 - val_loss: 0.0948
Epoch 60/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0941 - val_loss: 0.0937
Epoch 61/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0940 - val_loss: 0.0937
Epoch 62/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0941 - val_loss: 0.0946
Epoch 63/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0940 - val_loss: 0.0944
Epoch 64/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0940 - val_loss: 0.0938
Epoch 65/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0940 - val_loss: 0.0938
Epoch 66/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0940 - val_loss: 0.0937
Epoch 67/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0939 - val_loss: 0.0937
Epoch 68/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0939 - val_loss: 0.0937
Epoch 69/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0939 - val_loss: 0.0944
Epoch 70/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0939 - val_loss: 0.0938
Epoch 71/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0940 - val_loss: 0.0940
Epoch 72/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0939 - val_loss: 0.0937
Epoch 73/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0939 - val_loss: 0.0941
Epoch 74/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0939 - val_loss: 0.0936
Epoch 75/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0938 - val_loss: 0.0936
Epoch 76/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0938 - val_loss: 0.0937
Epoch 77/100
%%%% Output: stream
60000/60000 [==============================] - 3s 50us/step - loss: 0.0939 - val_loss: 0.0936
Epoch 78/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0938 - val_loss: 0.0937
Epoch 79/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0938 - val_loss: 0.0935
Epoch 80/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0938 - val_loss: 0.0936
Epoch 81/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0937 - val_loss: 0.0935
Epoch 82/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0937 - val_loss: 0.0936
Epoch 83/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0937 - val_loss: 0.0935
Epoch 84/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0937 - val_loss: 0.0935
Epoch 85/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0937 - val_loss: 0.0936
Epoch 86/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0937 - val_loss: 0.0935
Epoch 87/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0936 - val_loss: 0.0944
Epoch 88/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0937 - val_loss: 0.0942
Epoch 89/100
60000/60000 [==============================] - 3s 45us/step - loss: 0.0936 - val_loss: 0.0934
Epoch 90/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0936 - val_loss: 0.0936
Epoch 91/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0936 - val_loss: 0.0935
Epoch 92/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0936 - val_loss: 0.0936
Epoch 93/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0936 - val_loss: 0.0940
Epoch 94/100
60000/60000 [==============================] - 3s 48us/step - loss: 0.0936 - val_loss: 0.0940
Epoch 95/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0935 - val_loss: 0.0934
Epoch 96/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0936 - val_loss: 0.0934
Epoch 97/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0936 - val_loss: 0.0944
Epoch 98/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0936 - val_loss: 0.0933
Epoch 99/100
60000/60000 [==============================] - 3s 46us/step - loss: 0.0935 - val_loss: 0.0936
Epoch 100/100
60000/60000 [==============================] - 3s 47us/step - loss: 0.0935 - val_loss: 0.0934
%%%% Output: execute_result
<keras.callbacks.History at 0x2aab68566470>
%% Cell type:markdown id: tags:
# How'd we do?
%% Cell type:code id: tags:
``` python
decoded_imgs = autoencoder.predict(x_test_noisy)
n = 10
plt.figure(figsize=(20, 4))
for i in range(1,n):
# display original
ax = plt.subplot(2, n, i)
plt.imshow(x_test_noisy[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(2, n, i + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment