slurm-2sql.ipynb 8.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sqlite3\n",
    "import slurm2sql\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db = sqlite3.connect('test.db')\n",
    "slurm2sql.slurm2sql(db, ['-S', '2020-03-18', '-a'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# For example, you can then convert to a dataframe:\n",
    "df1 = pd.read_sql('SELECT * FROM slurm', db)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>JobID</th>\n",
       "      <th>ArrayJobID</th>\n",
       "      <th>ArrayTaskID</th>\n",
       "      <th>JobStep</th>\n",
       "      <th>JobIDSlurm</th>\n",
       "      <th>JobName</th>\n",
       "      <th>User</th>\n",
       "      <th>Group</th>\n",
       "      <th>Account</th>\n",
       "      <th>State</th>\n",
       "      <th>...</th>\n",
       "      <th>MaxDiskReadNode</th>\n",
       "      <th>MaxDiskReadTask</th>\n",
       "      <th>MaxDiskWrite</th>\n",
       "      <th>MaxDiskWriteNode</th>\n",
       "      <th>MaxDiskWriteTask</th>\n",
       "      <th>ReqGPUS</th>\n",
       "      <th>Comment</th>\n",
       "      <th>GPUMem</th>\n",
       "      <th>GPUEff</th>\n",
       "      <th>NGPU</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>3319116</td>\n",
       "      <td>3319116</td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>3319116_[43-45,47%5]</td>\n",
       "      <td>1mUD1MPa</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>PENDING</td>\n",
       "      <td>...</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3927198</td>\n",
       "      <td>3887451</td>\n",
       "      <td>30.0</td>\n",
       "      <td>None</td>\n",
       "      <td>3887451_30</td>\n",
       "      <td>100kCrC20MPa</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>COMPLETED</td>\n",
       "      <td>...</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3927198</td>\n",
       "      <td>3887451</td>\n",
       "      <td>30.0</td>\n",
       "      <td>batch</td>\n",
       "      <td>3887451_30.batch</td>\n",
       "      <td>batch</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>user</td>\n",
       "      <td>COMPLETED</td>\n",
       "      <td>...</td>\n",
       "      <td>c0088</td>\n",
       "      <td>0</td>\n",
       "      <td>1.222336e+10</td>\n",
       "      <td>c0088</td>\n",
       "      <td>0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3927198</td>\n",
       "      <td>3887451</td>\n",
       "      <td>30.0</td>\n",
       "      <td>extern</td>\n",
       "      <td>3887451_30.extern</td>\n",
       "      <td>extern</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>user</td>\n",
       "      <td>COMPLETED</td>\n",
       "      <td>...</td>\n",
       "      <td>c0088</td>\n",
       "      <td>0</td>\n",
       "      <td>0.000000e+00</td>\n",
       "      <td>c0088</td>\n",
       "      <td>0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3927199</td>\n",
       "      <td>3887451</td>\n",
       "      <td>31.0</td>\n",
       "      <td>None</td>\n",
       "      <td>3887451_31</td>\n",
       "      <td>100kCrC20MPa</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>user</td>\n",
       "      <td>COMPLETED</td>\n",
       "      <td>...</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td></td>\n",
       "      <td></td>\n",
       "      <td>NaN</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 63 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     JobID  ArrayJobID  ArrayTaskID JobStep            JobIDSlurm  \\\n",
       "0  3319116     3319116          NaN    None  3319116_[43-45,47%5]   \n",
       "1  3927198     3887451         30.0    None            3887451_30   \n",
       "2  3927198     3887451         30.0   batch      3887451_30.batch   \n",
       "3  3927198     3887451         30.0  extern     3887451_30.extern   \n",
       "4  3927199     3887451         31.0    None            3887451_31   \n",
       "\n",
       "        JobName      User     Group   Account      State  ...  \\\n",
       "0      1mUD1MPa  user  user  user    PENDING  ...   \n",
       "1  100kCrC20MPa  user  user  user  COMPLETED  ...   \n",
       "2         batch                      user  COMPLETED  ...   \n",
       "3        extern                      user  COMPLETED  ...   \n",
       "4  100kCrC20MPa  user  user  user  COMPLETED  ...   \n",
       "\n",
       "   MaxDiskReadNode  MaxDiskReadTask  MaxDiskWrite  MaxDiskWriteNode  \\\n",
       "0                                             NaN                     \n",
       "1                                             NaN                     \n",
       "2            c0088                0  1.222336e+10             c0088   \n",
       "3            c0088                0  0.000000e+00             c0088   \n",
       "4                                             NaN                     \n",
       "\n",
       "   MaxDiskWriteTask  ReqGPUS Comment GPUMem  GPUEff  NGPU  \n",
       "0                        NaN    None   None    None  None  \n",
       "1                        NaN    None   None    None  None  \n",
       "2                 0      NaN    None   None    None  None  \n",
       "3                 0      NaN    None   None    None  None  \n",
       "4                        NaN    None   None    None  None  \n",
       "\n",
       "[5 rows x 63 columns]"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.head(5)"
   ]
  },
William Monroe's avatar
William Monroe committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "more plots to come\n"
     ]
    }
   ],
   "source": [
    "print(\"more plots to come\")"
   ]
  },
278
279
280
281
282
283
284
285
286
287
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
William Monroe's avatar
William Monroe committed
288
   "display_name": "Python 3",
289
   "language": "python",
William Monroe's avatar
William Monroe committed
290
   "name": "python3"
291
292
293
294
295
296
297
298
299
300
301
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
William Monroe's avatar
William Monroe committed
302
   "version": "3.7.5"
303
304
305
306
307
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}