NLP_Project_Code.ipynb 2.95 KB
Newer Older
Zaid A Ali's avatar
Zaid A Ali committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "bc36f532",
   "metadata": {},
   "source": [
    "NLP project ideas: \n",
    "\n",
    "I found this paper, which seems to be what I was proposing! Labeling clinical notes to map the ICD codes (Multi-label text classification) https://arxiv.org/abs/2102.09136 \n",
    "\n",
    "Another article used the same data set MIMIC-III to evaluate the ICD9 code assignment of RNNs and CNNs. https://github.com/lsy3/clinical-notes-diagnosis-dl-nlp \n",
    "\n",
    "GitHub seems to provide code and cleaned data sets.  \n",
    "\n",
    " Paper: https://arxiv.org/pdf/1802.02311v2.pdf \n",
    "\n",
    "This one used a different dataset to assign ICD-10 code with BERTS: http://ceur-ws.org/Vol-2380/paper_67.pdf \n",
    "\n",
    " \n",
    "\n",
    "MIMIC-III: https://paperswithcode.com/dataset/mimic-iii \n",
    "\n",
    "Link to data: \n",
    "\n",
    "MIMIC- III: https://uab.box.com/s/pjf41j05n33wjktu93p98vla3mfvhjwu \n",
    "\n",
    "MIMICII: https://uab.box.com/s/5pfa044uywvuwq084798w52fvdjtw8l3 \n",
    "\n",
    "Cantemist: https://uab.box.com/s/l0bm5v3mg814j4iv4uqv01cy74kff24e \n",
    "\n",
    " \n",
    "\n",
    "Using the resources from the GitHub project to assign ICD9 code using different multi-label text classification models  \n",
    "\n",
    "Is it possible to optimize their models? \n",
    "\n",
    "Prediction models using the ICD9 codes with covariates (insurance type, gender*, ethnicity, marital status, admission type) to see what are the top ICD codes that are associated with prolonged length of stay. https://towardsdatascience.com/predicting-hospital-length-of-stay-at-time-of-admission-55dfdfe69598 \n",
    "\n",
    "Compare the prediction models of different multi-label text classification models, and see if the results are agreed across models \n",
    "\n",
    " \n",
    "| Task | Assigned To | Deadline|\n",
    " ------|-------------|----------\n",
    "|      |\n",
    "|------|\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " \n",
    "\n",
    " "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "72a0901e",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}