Commit 3037c804 authored by Chirag Chandrahas Shetty's avatar Chirag Chandrahas Shetty
Browse files

removing the output and metadata from notebook while doing git diff

parent ea026f5f
......@@ -2,13 +2,8 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-03-16T20:57:10.405006Z",
"start_time": "2020-03-16T20:56:55.837670Z"
}
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
......@@ -18,13 +13,8 @@
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2020-03-16T20:57:11.865980Z",
"start_time": "2020-03-16T20:57:10.414986Z"
}
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('neurobiologyusage.txt',delimiter='|')"
......@@ -32,175 +22,18 @@
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2020-03-16T20:57:11.932878Z",
"start_time": "2020-03-16T20:57:11.905219Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>User</th>\n",
" <th>Start</th>\n",
" <th>JobID</th>\n",
" <th>JobName</th>\n",
" <th>State</th>\n",
" <th>Partition</th>\n",
" <th>MaxRSS</th>\n",
" <th>ReqMem</th>\n",
" <th>ReqCPUS</th>\n",
" <th>NodeList</th>\n",
" <th>NNodes</th>\n",
" <th>Elapsed</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>mdefende</td>\n",
" <td>2019-01-06T22:00:21</td>\n",
" <td>2040834</td>\n",
" <td>_interactive</td>\n",
" <td>COMPLETED</td>\n",
" <td>medium</td>\n",
" <td>NaN</td>\n",
" <td>10000Mc</td>\n",
" <td>1</td>\n",
" <td>c0088</td>\n",
" <td>1</td>\n",
" <td>16:04:23</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>2019-01-06T22:00:21</td>\n",
" <td>2040834.batch</td>\n",
" <td>batch</td>\n",
" <td>COMPLETED</td>\n",
" <td>NaN</td>\n",
" <td>1394528K</td>\n",
" <td>10000Mc</td>\n",
" <td>1</td>\n",
" <td>c0088</td>\n",
" <td>1</td>\n",
" <td>16:04:23</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>lianov</td>\n",
" <td>2019-01-07T16:15:21</td>\n",
" <td>2043373</td>\n",
" <td>Pipe_trim_galore</td>\n",
" <td>COMPLETED</td>\n",
" <td>medium</td>\n",
" <td>NaN</td>\n",
" <td>2000Mc</td>\n",
" <td>1</td>\n",
" <td>c0038</td>\n",
" <td>1</td>\n",
" <td>00:18:41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>2019-01-07T16:15:21</td>\n",
" <td>2043373.batch</td>\n",
" <td>batch</td>\n",
" <td>COMPLETED</td>\n",
" <td>NaN</td>\n",
" <td>58592K</td>\n",
" <td>2000Mc</td>\n",
" <td>1</td>\n",
" <td>c0038</td>\n",
" <td>1</td>\n",
" <td>00:18:41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>lianov</td>\n",
" <td>2019-01-07T16:15:21</td>\n",
" <td>2043374</td>\n",
" <td>Pipe_trim_galore</td>\n",
" <td>COMPLETED</td>\n",
" <td>medium</td>\n",
" <td>NaN</td>\n",
" <td>2000Mc</td>\n",
" <td>1</td>\n",
" <td>c0063</td>\n",
" <td>1</td>\n",
" <td>00:15:48</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" User Start JobID JobName State \\\n",
"0 mdefende 2019-01-06T22:00:21 2040834 _interactive COMPLETED \n",
"1 NaN 2019-01-06T22:00:21 2040834.batch batch COMPLETED \n",
"2 lianov 2019-01-07T16:15:21 2043373 Pipe_trim_galore COMPLETED \n",
"3 NaN 2019-01-07T16:15:21 2043373.batch batch COMPLETED \n",
"4 lianov 2019-01-07T16:15:21 2043374 Pipe_trim_galore COMPLETED \n",
"\n",
" Partition MaxRSS ReqMem ReqCPUS NodeList NNodes Elapsed \n",
"0 medium NaN 10000Mc 1 c0088 1 16:04:23 \n",
"1 NaN 1394528K 10000Mc 1 c0088 1 16:04:23 \n",
"2 medium NaN 2000Mc 1 c0038 1 00:18:41 \n",
"3 NaN 58592K 2000Mc 1 c0038 1 00:18:41 \n",
"4 medium NaN 2000Mc 1 c0063 1 00:15:48 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2020-03-16T20:57:14.154962Z",
"start_time": "2020-03-16T20:57:11.967976Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array(['medium', nan, 'medium', ..., 'medium', nan, nan], dtype=object)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[['jid','step']] = df.JobID.str.split(\".\",expand=True) \n",
"df.Partition.values"
......@@ -209,34 +42,8 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"start_time": "2020-03-16T20:56:57.392Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/wsmonroe/.conda/envs/wsmplayground/lib/python3.6/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" after removing the cwd from sys.path.\n",
"/home/wsmonroe/.conda/envs/wsmplayground/lib/python3.6/site-packages/pandas/core/generic.py:7626: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" self._update_inplace(new_data)\n",
"/home/wsmonroe/.conda/envs/wsmplayground/lib/python3.6/site-packages/IPython/core/interactiveshell.py:2961: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" exec(code_obj, self.user_global_ns, self.user_ns)\n"
]
}
],
"metadata": {},
"outputs": [],
"source": [
"batchDF=df.dropna(subset=[\"MaxRSS\"])\n",
"userDF=df.dropna(subset=[\"User\"])\n",
......@@ -257,64 +64,9 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:wsmplayground]",
"language": "python",
"name": "conda-env-wsmplayground-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
......
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
......@@ -13,20 +13,9 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"db = sqlite3.connect('test.db')\n",
"slurm2sql.slurm2sql(db, ['-S', '2020-03-18', '-a'])"
......@@ -34,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
......@@ -44,216 +33,9 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>JobID</th>\n",
" <th>ArrayJobID</th>\n",
" <th>ArrayTaskID</th>\n",
" <th>JobStep</th>\n",
" <th>JobIDSlurm</th>\n",
" <th>JobName</th>\n",
" <th>User</th>\n",
" <th>Group</th>\n",
" <th>Account</th>\n",
" <th>State</th>\n",
" <th>...</th>\n",
" <th>MaxDiskReadNode</th>\n",
" <th>MaxDiskReadTask</th>\n",
" <th>MaxDiskWrite</th>\n",
" <th>MaxDiskWriteNode</th>\n",
" <th>MaxDiskWriteTask</th>\n",
" <th>ReqGPUS</th>\n",
" <th>Comment</th>\n",
" <th>GPUMem</th>\n",
" <th>GPUEff</th>\n",
" <th>NGPU</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3319116</td>\n",
" <td>3319116</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>3319116_[43-45,47%5]</td>\n",
" <td>1mUD1MPa</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>PENDING</td>\n",
" <td>...</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3927198</td>\n",
" <td>3887451</td>\n",
" <td>30.0</td>\n",
" <td>None</td>\n",
" <td>3887451_30</td>\n",
" <td>100kCrC20MPa</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>COMPLETED</td>\n",
" <td>...</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3927198</td>\n",
" <td>3887451</td>\n",
" <td>30.0</td>\n",
" <td>batch</td>\n",
" <td>3887451_30.batch</td>\n",
" <td>batch</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>gpekmezi</td>\n",
" <td>COMPLETED</td>\n",
" <td>...</td>\n",
" <td>c0088</td>\n",
" <td>0</td>\n",
" <td>1.222336e+10</td>\n",
" <td>c0088</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3927198</td>\n",
" <td>3887451</td>\n",
" <td>30.0</td>\n",
" <td>extern</td>\n",
" <td>3887451_30.extern</td>\n",
" <td>extern</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>gpekmezi</td>\n",
" <td>COMPLETED</td>\n",
" <td>...</td>\n",
" <td>c0088</td>\n",
" <td>0</td>\n",
" <td>0.000000e+00</td>\n",
" <td>c0088</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3927199</td>\n",
" <td>3887451</td>\n",
" <td>31.0</td>\n",
" <td>None</td>\n",
" <td>3887451_31</td>\n",
" <td>100kCrC20MPa</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>gpekmezi</td>\n",
" <td>COMPLETED</td>\n",
" <td>...</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 63 columns</p>\n",
"</div>"
],
"text/plain": [
" JobID ArrayJobID ArrayTaskID JobStep JobIDSlurm \\\n",
"0 3319116 3319116 NaN None 3319116_[43-45,47%5] \n",
"1 3927198 3887451 30.0 None 3887451_30 \n",
"2 3927198 3887451 30.0 batch 3887451_30.batch \n",
"3 3927198 3887451 30.0 extern 3887451_30.extern \n",
"4 3927199 3887451 31.0 None 3887451_31 \n",
"\n",
" JobName User Group Account State ... \\\n",
"0 1mUD1MPa gpekmezi gpekmezi gpekmezi PENDING ... \n",
"1 100kCrC20MPa gpekmezi gpekmezi gpekmezi COMPLETED ... \n",
"2 batch gpekmezi COMPLETED ... \n",
"3 extern gpekmezi COMPLETED ... \n",
"4 100kCrC20MPa gpekmezi gpekmezi gpekmezi COMPLETED ... \n",
"\n",
" MaxDiskReadNode MaxDiskReadTask MaxDiskWrite MaxDiskWriteNode \\\n",
"0 NaN \n",
"1 NaN \n",
"2 c0088 0 1.222336e+10 c0088 \n",
"3 c0088 0 0.000000e+00 c0088 \n",
"4 NaN \n",
"\n",
" MaxDiskWriteTask ReqGPUS Comment GPUMem GPUEff NGPU \n",
"0 NaN None None None None \n",
"1 NaN None None None None \n",
"2 0 NaN None None None None \n",
"3 0 NaN None None None None \n",
"4 NaN None None None None \n",
"\n",
"[5 rows x 63 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"df1.head(5)"
]
......@@ -267,22 +49,9 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:.conda-slurm-ds]",
"language": "python",
"name": "conda-env-.conda-slurm-ds-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.1"
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment