
GitLab
Lara Ianov, Ph.D.

Neurodevelopmental Bioinformatics Initiative (NBI)
Civitan International Research Center
University of Alabama at Birmingham

Git

• Version control software
• Tracks changes among all members
• Maintains a history of all changes in an organized way and allows one to

revert changes
• A higher order method over the standard ”copy and change name method”:

copy a file with changes to it and name it differently or place it in time-
stamped directories - usually these scripts are filled with unnecessary
comments documenting the changes
• A git repository contains the full history of the project. Each clone will always

mirror the full repository. Thus, git is a Distributed Version Control System

GitLab, GitHub, Bitbucket etc.
• Web-based services which can be used to host your git repositories in a streamlined

manner. Here are some differences among them:

UAB RC hosts

*

* As a student (with .edu account), you can have private repos for free with access to “student
developer plan”. Details at: https://help.github.com/articles/applying-for-a-student-developer-pack/

Table source:
https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1

*

https://help.github.com/articles/applying-for-a-student-developer-pack/
https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1

GitLab
• Sign-in with Blazer ID and password: https://gitlab.rc.uab.edu/users/sign_in
• Learning sources:

• Git for beginners from UAB RC: https://docs.uabgrid.uab.edu/wiki/Git_For_Beginners
• GitLab tutorial: https://www.tutorialspoint.com/gitlab/index.htm
• GitLab docs: https://docs.gitlab.com/
• Atlassian’s tutorial: https://www.atlassian.com/git/tutorials/what-is-version-control
• Google J

• Today’s focus: GitLab’s graphical interface (with some emphasis on important commands)
• Basic git terminology:

• Clone: copy a repository (repo)
• Commit: record changes to the repo
• Push: updates remote git repo with committed changes (if working outside of GitLab environment)
• Branch: independent area of development from the primary set/branch
• … and more

https://gitlab.rc.uab.edu/users/sign_in
https://docs.uabgrid.uab.edu/wiki/Git_For_Beginners
https://www.tutorialspoint.com/gitlab/index.htm
https://docs.gitlab.com/
https://www.atlassian.com/git/tutorials/what-is-version-control

GitLab groups
GitLab “groups” are ideal for
individual labs/cores
• Unlimited number of

projects (there is a limit in
your own profile)

• Easy to collaborate/share

Access can be given to:
1. Specific user(s)
2. Everyone at UAB
3. Globally
They may also open “issues” with requests to add specific features etc.

SHA-1 hash is essential
to git’s method of
version control

See more member permissions at: https://docs.gitlab.com/ee/user/permissions.html

https://docs.gitlab.com/ee/user/permissions.html

GitLab – Starting a repository
• From GitLab:

Path may be user profile or specific groups (e.g.: “CIRC_NBI”)

• From the command line:
• Very nice when uploading a directory of existing files

Or type a one-liner to stage and commit all tracked files:
git commit –a –m “message goes here”

Commands to upload files when initial project (in this case
named “gitlab_demo”) was created in GitLab

• From the command line:
• Or create the project directly from the command line and push all files to the

project

cd existing_folder
git init
git add .
git commit –m “initial commit message”

With SSH
git push -u git@gitlab.rc.uab.edu:<namespace>/<project_name>.git master
git remote add origin git@gitlab.rc.uab.edu:<namespace>/<project_name>.git

OR with HTTPS
git push -u https://gitlab.rc.uab.edu/<namespace>/<project_name>.git master
git remote add origin https://gitlab.rc.uab.edu/<namespace>/<project_name>.git

FYI on setting up SSH for GitLab: https://docs.gitlab.com/ee/ssh/README.html

https://docs.gitlab.com/ee/ssh/README.html

• GitLab contains an integrated development environment (IDE) – OK
for small edits, but I do not use it for large projects/changes.

GitLab – Edit and commit

GitLab’s IDE

Hit “Stage and Commit” and include a message. Same as git add . && git commit –m “message”
No need to push as this is being done directly in GitLab.

Note, the option of committing into the master branch or a new branch. A new branch would
be wise if you are still testing the code or to work among collaborators where you would send
(“create a merge request”) the reviewed code to the project’s maintainer.

üGitLab contains an integrated development environment (IDE) – OK
for small edits, but I do not use it for large projects/changes.
• Cloning the repo to your local computer and using your favorite editor

is usually best for large changes.
• git clone <SSH or HTTPS>

GitLab – Edit and commit

Copy SSH/HTTPS here

Click “Clone”

You may also
download

üGitLab contains an integrated development environment (IDE) – OK
for small edits, but I do not use it for large projects/changes.
• Cloning the repo to your local computer and using your favorite editor

is usually best for large changes.
• git clone <SSH or HTTPS>

GitLab – Edit and commit

Line added in my editor of choice in my
computer and then:
git add .
git commit –m “edit made locally
in my editor”
git push -u origin master

GitLab – Atom integration
• Atom is a great editor for both GitHub and GitLab as it integrates the git

commands, allowing you to perform tasks such as commit and push directly
from the editor. Explore Atom’s packages such as this to learn more

push icon is available after committing

Highlights changes

https://atom.io/packages/gitlab-integration

GitLab – History
• Regardless of where changes were made (in GitLab IDE or locally and

then pushed), all changes are easily tracked in GitLab:

Note the changes in SHA-1

FYI command line version: git log

FYI command line version: git show <SHA-1>

• By default, all projects start with one branch, called master. All
commits I have done in this demo so far have been made to master.
• But what if you would like to work on the repo without committing to

the main branch? Maybe testing code without overwriting the
master branch?
• This is where branching is very useful, especially when more than one

person is working on the same code.
• In the case of more than one person, a collaborator can branch, edit

independently at the isolated branch and when finalized, send a merge
request to the maintainer who can approve to merge all changes into the
master branch.

GitLab - Branch
master

develop_area
merge

You can now edit the code of the
second branch and click on “branches”
to compare and add a merge request

• Again, using GitLab’s IDE may be OK for small changes but I prefer
local for larger changes:

GitLab - Branch

• Atom’s packages offer good features to do this as well

git clone <SSH or HTTPS> # or git pull
cd <cloned_dir> # only needed if cloned
git branch –a
git checkout <branch_name> (switches the branch)
modify code
git commit –am “message goes here” (adding in one-liner)
git push –u origin <branch_name>

A big thank you to UAB Research Computing for hosting GitLab and for
taking the time to provide additional documentation and training

My contact info:

lianov@uab.edu

CIRC 252C | P: 205-996-5871

NBI

Thanks!

https://sites.google.com/view/circ-nbi/home

